If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+35x-30=0
a = -5; b = 35; c = -30;
Δ = b2-4ac
Δ = 352-4·(-5)·(-30)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-25}{2*-5}=\frac{-60}{-10} =+6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+25}{2*-5}=\frac{-10}{-10} =1 $
| .x/3-2=4 | | 13x-5=9x+27 | | 1+3x=5x+1 | | 7x=7(x+1) | | 7–(3x+5)=2x | | 3x-2.4=x+2.4 | | (3x-2)=(7x+1)/7 | | 2z/9+2=-5 | | Y=1.9x+25 | | 12y=8=12 | | z-7=16 | | -4x+11+3x+2=6x+7+5x+4 | | x/0,2=30 | | 8b+5=16-12 | | 8b=5=16-12 | | 70=(x-30) | | 12–6x=72 | | 3x+18=-19 | | 2x+1/x+3=9 | | 2x-7=5x= | | 6+12x=-16+4 | | 51=12x-7 | | (4x+30)=(3x+50) | | 3x–12=15 | | (4z-43)+115=180 | | 17=(1-x)*8+(x*20) | | 6(x+2=-72 | | 3y+6=7y-23 | | 12=(1-x)*10+(x*20) | | 4x^2-11=2x^2+9-3x^2 | | 80=(3x+20) | | 8w+9=4w+12 |